AFAIK

Valar Morghulis

\(\newcommand{\D}[0]{\mathrm{d}}\) 卡着第 50 名过……

谁来教教我如何用微积分算期望啊,我算着简直要疯了。。

Solution

其实只要算出这两个随机变量的 pdf 就好了。但是我觉得算起来特别恶心……主要是对这货不熟吧,时不时就卡住了。

首先算第一个的 pdf 。我们枚举累加器是在第 \(n\) 次累加时超过 1 ,我们计算出 \(n\) 个变量的和为 \(t\) 的 pdf \(f(x) = \frac{t^{n - 1}}{(n - 1)!}\) ,则第一个值的密度分布函数为 \[ \begin{aligned} P(x) & = \sum_{n = 1}^\infty \int_{1 - x}^{1} f(t) \D{t} \\ & = \sum_{n = 1}^\infty \int_{1 - x}^{1} \frac{t^{n - 1}}{(n - 1)!} \D{t} \\ & = \sum_{n = 1}^\infty \frac{1 - (1 - x)^n}{n!} \\ & = \sum_{n = 1}^\infty \frac{1}{n!} - \sum_{n = 1}^\infty \frac{(1 - x)^n}{n!} \\ & = (e - 1) - (e^{1 - x} - 1) \\ & = e - e^{1 - x} \\ \end{aligned} \]

第二个值的 pdf 就比较恶心了。还是同样的思想,我们令 \(g_n(x)\) 表示 \(n\) 个 0 到 1 的变量的和为 \(1 + x\) 的 pdf ,可以得到 \(g_1(x) = 0\) 。可以求出 \(g_n (x)\) 递推式:

\[ \begin{aligned} g_{n+1}(x) & = \int_{0}^x g_n(t) \D{t} + \int_{x}^1 f(t) \D{t} \\ & = \int_{0}^x g_n(t) \D{t} + \frac{1 - x^n}{n!} \\ \end{aligned} \]

求出 \(g_n(x)\) 通项似乎是比较困难的,但是注意,第二个值的 pdf 我们只关心 \(\sum_{n=1}^\infty g_n(x)\)

对于递推式 \(v_{n+1}(x) = \int_0^x v_n(t) \D{t}, v_{0}(x) = 1\) ,我们可以得到 \(v_n(x) = \frac{x^n}{n!}\) ,则 \(\sum_{n=0}^\infty v_n(x) = e^x\)

我们考虑 \(g_{n+1}(x) = \int_0^x g_n(t) \D{t} + \frac{1 - x^n}{n!}\) 里面的 \(\frac{1}{n!}\) 。这个数会被连续积分无数次,最后对 \(\sum_{n = 1}^\infty g_n (x)\) 的贡献是 \(\frac{e^x}{n!}\)\(\frac{x^n}{n!}\) 也会被积分无数次,注意到对于 \(k\) 来说,所有 \(x \leq k\)\(\frac{x^n}{n!}\) 积分时都会得到过一个 \(\frac{x^k}{k!}\) ,所以这部分对于和的贡献是 \(\sum_{k = 1}^\infty k \frac{x^k}{k!} = x e^x\) 。所以我们有: \[\sum_{n = 1}^\infty g_n(x) = \sum_{n = 1}^\infty \frac{e^x}{n!} - x e^x = e^x (e - 1 - x)\]

现在要开始求第二个值的 pdf 了。令 pdf 为 \(Q(x)\) ,则有 : \[Q(x) = \int_{1-x}^1 e^x(e-1-x)\D{x}\]

知道了 \(P(x)\)\(Q(x)\) ,答案就是:

\[ans = \int_{0}^1 Q(x) \int_0^x P(y) \D{y} \D{x}\]

\(Q(x)\)\(ans\) 的具体表达式我用的 sage 暴力算的,就没写出来了。

nonsense

看着 forum 里面各种高大上的积分感觉被虐傻了。

@dyh 求你的做法。

又在军训的时候想出一道题……

Problem

\(2n\) 个人,编号 1 到 \(2n\) ,每个人头上有一顶帽子,帽子要么是黑色的要么是白色的。现在这 \(2n\) 个人需要同时说出自己帽子的颜色,如果不少于 \(n\) 个人说对了自己帽子的颜色,则这局游戏获胜,否则失败。求是否存在必胜策略。

Read more »

居然能在站军姿的时候 YY 出一道题……

Problem

\(n\) 个人,对于任意一个非空子集 \(S\) ,都存在一个人使得他在 \(S\) 中有偶数个朋友。求证 \(n\) 是偶数。

Read more »

智商亟需拯救。 \(\newcommand{\D}[0]{\mathrm{d}}\)

Problem

@fotile 问的一个题,我将题目改了下描述:

\(n\) 个变量 \(x_1, x_2, \dots, x_n\) ,满足 \(0 \leq x_i\)\(\sum x_i = 1\) 。求 \(x_i\) 中第 \(k\) 小值的期望。

Read more »

听天由命的节奏?

Problem

Mathematics (60 pts + 10 bonus pts)

1 (5 pts)

一个人、一只狼、一头羊、一卷白菜要过河。如果人不在,狼会吃羊,羊会吃白菜。求过河方案。

2 (10 pts)

两个 \(8 \times 8\) 的棋盘,第一个棋盘 \((i, j)\) 为黑当且仅当 \(\frac{i}{2} \equiv \frac{j}{2} \mod{2}\) ,第二个棋盘 \((i, j)\) 为黑当且仅当 \(i \equiv j \mod{2}\) 。现在要求将第一个棋盘剪成若干块,然后重新组成第二个棋盘,问至少要剪成多少块,并证明最优性。

3 (10 pts)

\([1, 10^6]\) 内所有数字的数位和。

4 (10 pts)

\(n\) 个人,每个人有一个秘密,现在任意两个可以通过电话交流,每次交流后两人都知道了对方知道的所有的秘密。问至少要经过多少次交流才能使得每个人都知道所有秘密。

5 (15 pts)

A B 两点相距 1 个单位,现在你可以从 A 走 \(n\) 步到 B 去,每步必须走直线,且你到 B 的距离一定要减小。求你走的最长距离。

6 (10 pts + 10 bonus pts)

A B 两人玩游戏,A 被蒙上了眼睛。一个圆桌子上有 \(n\) 个硬币,每个硬币要么正面朝上要么反面朝上。两人轮流进行操作,每次操作如下:

  1. A 选择若干个位置
  2. B 旋转桌子
  3. 翻转 A 选择位置上的若干个硬币

如果所有的硬币都是朝上的那就是 A 赢。否则 B 赢。

问题有三个:

  1. (5 pts) 给出一个 \(n = 4\) 的必胜策略。所谓必胜策略是指无论初始状况怎么样,A 总是可以赢的策略。
  2. (5 pts) 证明 \(n\) 是奇数时 A 不存在必胜策略。
  3. (bonus 10 pts) 证明存在必胜策略,当且仅当 \(n\) 是 2 的整数次幂。

Physics (40 pts)

1 (5 pts)

画两个图的电场线。第一个图为一个金属空心球体内有一个正的点电荷,第二个图为外有一个正的点电荷。

2 (5 pts)

一个均匀绳子,长度为 \(L\) ,质量为 \(m\) ,下端刚好接触一个天平。现在开始自由下落。当天平上绳子的长度恰好为 \(x\) 时,求天平的超级罗瞬间读数。

3 (10 pts)

一个无穷网格,每条线段的电阻为 1 欧,求相邻两点之间的等效电阻的大小。

4 (10 pts)

将一个硬币抛起来,如果立起来的可能性为 \(\frac{1}{3}\) ,求硬币半径与厚度的关系。

5 (10 pts)

  1. (5 pts) 一个质量为 \(M\) 的球上放一个质量为 \(m\) 的小球。将两个球从 1m 出自由落体,已知 \(M\) 远远大于 \(m\) ,求小球能弹多高。
  2. (5 pts) 由第一问画出航天器借助行星来进行加速的原理。

所有碰撞均为完全弹性碰撞。

Read more »

在看到之前你会以为这是啥 = =?

wiki 在 这里

其实就是一个公式罢了。刚刚才发现的,实在是太漂亮了: \[\int_0^1 \frac{1}{x^x} \mathrm{d} x = \sum_{n=1} \frac{1}{n^n}\]

从一个积分到一个求和,连续到离散,真是不错。

证明的话, wiki 上有吧,摘抄如下。

首先变形: \(x^{-x} = e^{-x \log x}\) 。展开有: \[x^{-x} =\sum_{n=0} \frac{(-x \log x)^n}{n!}\]

代入并提前 \(\sum\)\[\int_0^1 \frac{1}{x^x} \mathrm{d} x = \int_0^1 \sum_{n=0} \frac{(-x \log x)^n}{n!} \mathrm{d} x = \sum_{n=0} \frac{1}{n!} \int_0^1 (-x \log x)^n \mathrm{d}x\]

换元,令 \(x = e^{-\frac{t}{n+1}}, \mathrm{d} x = -\frac{e^{-\frac{t}{n+1}}}{n+1}\mathrm{d}t\)\(0 < t < \infty\)\[ \begin{array}{rcl} \int_0^1 (-x \log x)^n \mathrm{d}x & = & \int_0^\infty(e^{-\frac{t}{n+1}} \frac{t}{n+1})^n \frac{-e^{-\frac{t}{n+1}}}{n+1}\mathrm{d}t \\ & = & \frac{1}{(n+1)^{n+1}} \int_\infty^0 -e^{-t} t^n \mathrm{d} t \\ & = & \frac{n!}{(n+1)^{n+1}} \\ \end{array} \]

再次代入: \[ \begin{array}{rcl} \int_0^1 \frac{1}{x^x} \mathrm{d} x & = & \sum_{n=0} \frac{1}{n!} \int_0^1 (-x \log x)^n \mathrm{d}x \\ & = & \sum_{n=0} \frac{1}{n!} \frac{n!}{(n+1)^{n+1}} \\ & = & \sum_{n=1} \frac{1}{n^n} \\ \end{array} \]

0%